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Detection limits in quantitative off-axis electron holography
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The phase of an electron wave is altered by electric and magnetic fields as it passes through a specimen. This phase
change can be accurately quantified from off-axis electron holograms acquired using a slow-scan CCD camera, and small
changes can be observed over small dimensions. Expressions for the precision of the phase estimate, which is limited by shot
noise, have been developed. These include most of the real experimental parameters. It is found that the typical precision of
practical phase measurements is better than 1 /100 for spatial resolutions of 1-3 nm, in good agreement with the
theoretical optimal phase precision. In order to attain such small errors the effects of geometric distortion, which can

introduce phase differences of up to =, must be carefully corrected.

1. Introduction

In conventional transmission electron mi-
croscopy only the amplitude of the image wave is
recorded and the phase is lost. Electron hologra-
phy enables measurement of the phase thus ac-
commodating a new class of experiments aimed
at direct determination of properties of electric
and magnetic fields in specimens [1-7]. Further-
more, remarkable progress has been made in
recent years in the application of electron holog-
raphy for exit-surface wave reconstruction by the
removal of objective lens aberrations from the
complex image wave [8].

Accurate quantitative analysis of information
contained in electron holograms has been diffi-
cult in the past due to limitations caused by the
recording medium and the procedures used to
extract the phase. Until recently, phase retrieval
was based on a reconstruction procedure imple-
mented on the optical bench. This technique does
not allow for easy quantitative analysis and, fur-
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thermore, measurement of very small phase dif-
ferences, as encountered, for example, in studies
of monatomic surface steps, is complicated. For
example, it has been shown that detection of
small differences (of the order of 21 /50) is possi-
ble with a phase difference amplification method
which involves a repeated application of optical
reconstruction that, while effective, is extremely
tedious [2,9]. In recent years holographic recon-
struction has been implemented on the computer,
which necessitated digitization of the photo-
graphic plate [8]. It has already been demon-
strated that digital reconstruction makes visual-
ization of phase shifts on the order of 27 /100
possible [10]. Unfortunately, quantitative analysis
was still not feasible, in part due to problems
associated with the photographic recording
medium. The effect of the non-linear response of
photographic material strongly affects holo-
graphic reconstruction, and therefore compli-
cated linearization techniques must be applied
[11]}. Furthermore, the projector lens system
causes geometric distortion which distorts abso-
lute phase measurements: this distortion is very
difficult to correct accurately from holograms
recorded photographically.
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Our aim in this paper is to show that the
process of holographic reconstruction can be con-
siderably simplified, and the detection limits and
measurement accuracy can be dramatically im-
proved by application of the slow-scan CCD cam-
era. This device records digitized images with a
large number of pixels (1024 X 1024), negligible
geometric distortion, perfect positional stability,
excellent linearity and approaches single-electron
detection [12,13]. Digital acquisition of electron
holograms with the slow-scan CCD camera re-
moves the necessity for tedious linearization pro-
cedures, facilitates simple geometric distortion
correction, and creates the possibility of on-line
digital reconstruction. Quantitative analysis and
visualization of the reconstructed phase can now
be performed with established digital image-
processing techniques, and elementary proce-
dures such as averaging and gray-scale enhance-
ment give dramatic improvements compared with
optical reconstruction techniques.

We present a theoretical analysis based on
statistical parameter estimation which establishes
the ultimate precision of phase measurements as
a function of important experimental parameters
such as electron dose and biprism voltage. Fur-
thermore, attention has been given to experimen-
tal design considerations in order to optimize this
precision. The measurement techniques pre-
sented in this paper have been used in the com-
panion papers on applications of electron holog-
raphy to the study of interfaces [14] and to mea-
sure absolute mean inner potential [15].

2. Theory
2.1. Electron holography

Interference between the object wave and a
reference wave is made possible by means of a
biprism located between the back focal plane of
the objective lens and the object plane of the
intermediate lens. The geometry is illustrated in
fig. 1. The amplitude of the image wave is present
in the hologram as a modulation of the intensity
of the holography fringes, whereas the phase is
visible through local fringe shifts. It is useful to

Field Emission Gun
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Objective lens

! Biprism

Intermediate image

Fig. 1. Principle of electron holography. The reference wave
(shaded) and the object wave interfere due to electrostatic
biprism.

consider the Fourier transform of the hologram
intensity which is given by

FlIa(r)] =8(0) + F(4*¢) + F(4) ® 5(g,,)
+F(y*)®8(—g,), (1)

where r denotes position in the image plane, g,
is the spatial frequency of the holography fringes,
o is the Dirac delta function, ® denotes convolu-
tion and F denotes Fourier transformation, ¢ is
the image wave given by

$(r) =A(r) expli¢(r)], (2)

with A(r) the amplitude and ¢(r) the phase. The
first terms on the right-hand side of eq. (1) repre-
sent the information also found in the diffrac-
togram of a bright-field image, namely the Fourier
transform of the squared image intensity. Addi-
tionally, the Fourier transform of the hologram
contains information in two sidebands, centered
around —g, and g,, which allow direct retrieval
of the complex image wave.

2.2. Precision of phase measurement

Due to coherence requirements, holograms are
typically recorded at electron doses of 100-200
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Interface or surface step
Fig. 2. Bending of holography fringes at interface or surface
step. Reconstruction of phase from electron hologram is

equivalent to estimation of phase of holography fringes, for
example, ¢, and ¢,, in regions 1 and 2.

el /px. Since holograms contain noise which limits
the measurement precision, the precision of the
phase measurement must be evaluated using sta-
tistical analysis. We need to measure the phase of
two-dimensional holography fringes (which are
two-dimensional sinusoids), as illustrated in fig. 2,
that are disturbed by noise.

Noise In an electron hologram is due to
single-electron events. The shot noise is white
and Poisson-distributed with a standard deviation
of o =N, where N, is the average number of
detected electrons per pixel. The amplitude of
the fringes can also be expressed in terms of
electron dose as A = VN, where V' is the fringe
visibility; a definition commonly used in light-
optics [16]. The achievable precision for estima-
tion of the phase is established in appendix A as:

N 14
var[d;] > m, (3)

where d; is an estimator for the quantity ¢ and
N, denotes the total electron dose in the mea-
sured area. Notice that the precision is not re-
lated to the spacing of the holography fringes.
The bound (3) can alternatively written as var[d;]
= 7/SNR with signal-to-noise ratio SNR =
VIN/2.

The minimum variance bound (3) is larger
than the bound given in refs. [17,18]: var[d;] =2/
V' 2N,. This bound was calculated for one-dimen-
sional signals with the assumption that the sinu-

soidial fringe spacing is a-priori known, and the
fringe amplitude is unknown (in this case the
extension to two dimensions is trivial). However,
in electron holography the x and the y compo-
nents of the spatial frequency vector are never
a-priori known in practice, and although they are
of no specific interest, they significantly influence
the precision of the phase estimate since these
quantities are unknown. The calculations in ap-
pendix A reconfirm the bound for the phase
estimate given in refs. [17,18)], and show that
inclusion of the spatial frequency in the x and
the y direction as unknowns increases the mini-
mum variance bound 7 times.

The practically achievable variance bound will
be larger than (3) due to loss of signal-to-noise
ratio associated with detection of the electron
hologram. Fortunately, the slow-scan CCD cam-
era is a near-ideal electron detector, and the loss
of precision is small. The slow-scan CCD camera
can be best characterized using the transfer effi-
ciency (TE), which is given by [19]:

TE(g) = SNR,,(8)/SNR,(g), (4)

with SNR _,(g) and SNR  (g) the signal-to-noise
ratios of the final digital image in the computer
and the original electron hologram, respectively.
Signal-to-noise ratio is defined as the ratio of the
power of the signal and the power of the noise at
spatial frequency g. For the ideal camera the
transfer efficiency is unity over all spatial fre-
quencies. However, this value is not achieved in
practice, due to backscattering of a percentage of
primary electrons incident on the scintillator [19].
For the electron doses typical in electron holog-
raphy (100-200 el/px) the transfer efficiency
proves to be a constant which is TE = 0.8 for the
Gatan 679 CCD camera equipped with thin YAG
scintillator [19]. With eq. (4) the minimum vari-
ance bound (3) can be rewritten as:

var[d;] > 5. (5)

The fact that the transfer efficiency of the camera
is independent of the spatial frequency of the
holography fringes might at first seem surprising,
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Fig. 3. Amplitude of holography fringes at five different
frequencies compared with the square root of the power
spectrum of the shot noise, as measured from a division of
two images recorded with uniform illumination without speci-
men. The amplitude of the holography fringe with lowest
spatial frequency is used to scale the measured amplitudes to
the power spectrum of the shot noise.

because fringes with higher spatial frequency are
attenuated considerably due to the modulation
transfer function of the CCD camera, which, for
our Gatan 679, is about 0.2 at the Nyquist fre-
quency [13]. Consider, however, that the shot
noise in the hologram should be attenuated by
exactly the same amount. Therefore, if the elec-
tron dose is not too small, such that the shot
noise due to primary electrons incident on the
scintillator dominate the noise contribution origi-
nating from electronic read-out noise and the
spread in CCD well-electron generation, the
transfer efficiency should be independent of the
spatial frequency [19]. This is illustrated by the
measurement results presented in fig. 3, showing
a comparison of the square root of the power
spectrum of the shot noise and the amplitude of
holography fringes imaged at different micro-
scope magnifications.

2.3. Experimental design considerations
The precision (5) is determined by the product

V2N, which is dependent upon several variables.
Tuning those variables to optimize the measure-

ment precision is known as experimental design
[20]. This section introduces important physical
parameters, determines their influence on the
precision of the phase measurement, in turn lead-
ing to recommendations for optimal experimental
conditions.

The variables which determine the total num-
ber of electrons N, incident in an area A4, follow
from [21]

*n'ZBRfa(Z)T 44,

N, = , 6
‘ e md,d, (6)

where B is the gun brightness, R, denotes the
Gaussian source size projected at the specimen
plane, a, is the convergence half angle of the
illumination, 7 is the measurement time, and d,,
d, are the major and minor axes, respectively, of
the astigmatic illumination. The fringe visibility V/
is highly dependent on the length d, of the
illuminated region in the direction perpendicular
to the holography fringes, and can be described
by [22,23]

(7)

27R,a D\’
Ad, ’

V =exp —(

where D is the distance between areas at the
specimen plane which interfere behind the
biprism.

The experimental parameters which are easi-
est to adjust are the illumination diameters d,
and d,. The product V2N, can be maximized
with respect to d, using egs. (6) and (7), as is
illustrated in fig. 4, with the result

p 47 R,ayD

= ®)
The width d, must be large enough to illuminate
width D evenly because for large convergence
angles («, > 10 mrad) spherical aberration of the
upper half of the objective lens, C, may domi-
nate the intensity distribution on the sample {24].
Since the spherical aberration caustic has a ra-
dius of about r,=C™a;, as long as d,>r,
which will generally be true for d,=kD with
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Fig. 4. Optimization of V2N, with respect to illumination
diameter d,. With experimental conditions given in tables 1
and 2 the optimal choice for d, is 38D, D being the distance
of interference distance scaled to the specimen, resulting in
an electron dose of 200 el /px and fringe visibility of 78%.

k > 1, the specimen will be evenly illuminated.
With these values for d, and d,, it follows that:

BR,agA Agt
S D S, S 9
lvt e kDZ ’ ( )
V=exp[—1/4]. (10)

The width D can be expressed in terms of the
biprism voltage Uy as:

2by,
2=,

obj

(11)

where b is the distance between the biprism and
the intermediate image plane, M, is the objec-
tive lens magnification, and y, is a constant de-
pending on the accelerating voltage of the micro-
scope [8]. Following egs. (5), (9) and (11) the
variance for the phase estimate is proportional to
U,§ /7, which implies that the precision (5) can be
optimized by choosing large 7 and small Up.
Unfortunately, these parameters cannot be cho-
sen arbitrarily.

The integration time 7 is limited by the stabil-
ity of the microscope, specifically the specimen
stage and the biprism mount. Drift of the speci-
men stage leads to loss of spatial resolution, and
since standard specimen holders are often not
rated at better than 1 nm/min drift, the acquisi-
tion time must usually be kept between 1 and 5 s.

Similarly, if the biprism position drifts during
acquisition, the fringe contrast will be reduced,
but since the objective lens magnification is high
and the biprism lies in the image plane of the
objective, there is considerably more tolerance
for biprism drift.

The choice of the biprism voltage Uy is limited
because the width of the field of view (11) and
the interference fringe spacing s

Af

- 12
' 254U, (12)

where f is the focal length of the objective lens
and a is the distance between the back focal
plane of the objective lens and the biprism, are
both dependent upon Uy. In the following we will
describe requirements for D and s, which lead to
a specific choice for Uyg.

The width of the holographic interference band
(11) at the detector plane should be about the
same size as the detector. The width of this
interference region is slightly less than D due to
vignetting of the biprism, resulting in:

MD =wNA_, (13)

where M is the microscope magnification, N is
the number of pixels across the CCD array, 4, is
the camera pixel size, and w is a constant of
value generally between 1 and 2. In addition, it is
necessary to make the fringe spacing s (12) greater
than the Nyquist limit 24, where 4 =A,/M. In
order to prevent overlap of the sidebands of the
hologram with the central diffractogram, it is
necessary to locate the sidebands an appreciable
distance away from the center, leading to a choice

Ms=nd4_, (14)

where n is a number in general between 3 and 5.
Specific choices for w and »n lead to unique
magnification and biprism voltage settings, which
are found by substitution of egs. (11) and (12) in
egs. (13) and (14), respectively:

Mobja 1/2
M=A, A wNn| (15)
1 [MAf wN]'/? o
"oyl @b n | (16)
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Table 1
Typical values for experimental parameters for electron
holography on Philips EM400ST-FEG with Gatan 679 CCD
camera

Param- Value Param- Value

eter eter
A 0.0037 nm R, 0.8 nm
Y 1.96X107° rad /V ag 14 mrad
¢ 1.602x 1071 C N 1024
My 35 A, 24 pm
f 1.5 mm TE 0.8
a 61 mm T ls
b 16 mm n 4
B 4% 10" A/m? st k 2

w 1.5

An expression for the for the optimal variance
of the phase estimate (5) follows from egs. (9)
and (10) combined with egs. (11) and (16):

14 exp[1/2] e fo wkN
TE BRayT Mya nAy '
(17)

Typical values of experimental parameters are
shown in table 1. The design rules outlined above,
combined with the experimental parameters listed
in table 1, result in the optimal experimental
conditions listed in table 2. The optimal standard
deviation in the measured phase follows from eq.
(17) by substituting values listed in table 1 and is
of the order of 7 /100 radians for small measure-
ment areas of the order of 4, =1 nm™.

var[ 4] =

3. Experimental holography
3.1. Digital acquisition of holograms

The off-axis electron holograms were pro-
duced in a Philips EM400ST-FEG electron mi-
croscope equipped with a thermally assisted field
emission gun [25]. The holograms were recorded
on a Gatan 679 slow-scan CCD camera equipped
with a 1024 X 1024 pixel detector. The biprism
was a thin glass fiber (~ 0.5 um diameter) coated
with a thin layer of gold which was mounted in
one of the selected area aperture positions. The

Table 2
Optimal experimental conditions for electron holography on
Philips EM400ST-FEG with Gatan 679 CCD camera

Parameter Value Parameter Value

d, 38D M 366000
d, 2D A 0.066 nm
D 100 nm Ug 884V
$ 0.26 nm 1% 78%
N, 50000 el /nm*

biprism was electrically isolated from the micro-
scope column, and was connected to an external
high-voltage battery source which could produce
variable potentials of up to 180 V on the biprism.
In order to facilitate electron holography, the
electronics of the microscope had to be slightly
altered to accommodate a higher current in the
first intermediate lens in order that the first in-
termediate image was formed below the biprism.

The CCD images were recorded using a Mac-
intosh 1Ifx computer equipped with 32 MB of
memory, a two-page monitor and a 20 MFlop
Mercury MC3200 floating point array processor.
The software delivered with the slow-scan CCD
camera (DigitalMicrograph) allowed user-ori-
ented expansion through custom functions. We

Hologram

l1 024x1024 FFT

Magnitude  Phase

Sideband 256x256 IFT

Image wave

Fig. 5. Reconstruction of magnitude and phase of the complex
image wave. FFT is fast forward Fourier transform and IFT is
fast inverse Fourier transform.
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developed as set of custom functions which en-
abled us to perform fast on-line and off-line
holographic reconstructions.

Due to coherence requirements, a dose rate of
approximately 50000 el/nm?-s was incident on
the specimen. In order to reduce the effects of
specimen and /or biprism drift, exposure times of

Fig. 6. (a) 256 X 256 pixel section of 1024 x 1024 pixel holo-

gram of wedge-shaped sample of single-crystal MgQO, and

180X 150 pixel sections from 256 X256 pixel reconstructed

phase images with (b) no averaging, (¢) 3 X3 pixel averaging

and (d) 10X 10 pixel averaging. The white contour lines are
plotted with 7 /2 increments in the phase.

about 1 s were typically used. With magnifica-
tions of about 300k X, at which 0.3 nm interfer-
ence fringes corresponded to a distance of 44 at
the CCD detector, this dose rate corresponded to
about 150 el /px on the detector.

The fiber-optic coupling which transferred
photons from the YAG scintillator to the CCD

gt &

i¥ P

. g
B e T T
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detector caused a characteristic pattern of small were taken out of the final image by gain normal-
intensity variations which, in the case of the Gatan ization accomplished by on-line division by a
679, was a hexagonal pattern. These variations gain-reference image [13].

Fig. 7. (a) Fourier transform of a 1024 x 1024 reference hologram, (b) enlarged view of sideband in box indicated in (a), (c)
reconstructed amplitude image, (d) reconstructed phase image, (¢) intensity profile along a line in (d), (f) 30-line average centered
along the same line, (g) intensity profile along a line in the corrected phase image and (h) 30-line average along the same line.
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Fig. 7 (continued).

3.2. Phase reconstruction

The restoration of the phase from the digitally
recorded hologram involved the use of standard
Fourier processing techniques. The availability of
digital data from the CCD camera greatly facili-
tated quantitative numerical processing and its
precision, since there were no intermediate
recording media or digitization processes which
could distort the data.

A Fourier spectrum of the off-axis hologram
shows prominent sidebands at a spatial frequency
corresponding to the interference fringe spacing.
The phase reconstruction involved the extraction
of a subregion centered on one of the sidebands
from the Fourier transform of the original holo-
gram, as shown in fig. 5. Subsequent inverse
Fourier transformation of this subregion yielded
a complex image, from which the amplitude and
phase were retrieved by simple mathematical op-
erations.

Several artifacts of the imaging and recon-
struction processes which appear at this point
must be removed before quantification is at-
tempted. First, geometric distortions of the pro-
jector lenses produce small shifts of the interfer-
ence fringes which cause distortions of the recon-

structed phase. Second, if the sideband is not
chosen exactly at the center of the extracted
subregion, a residual tilted plane will be added to
the phase image. Finally, if the phase changes in
the reconstructed image are larger than 2, cal-
culation of the phase by use of the inverse tan-
gent causes artifacts in the reconstructed phase in
the form of discontinuous jumps of 2. Methods
to remove these artifacts are discussed in the
following sections. These methods have been used
to produce the phase images in the example
presented in fig. 6. The reconstructed phase im-
ages in figs. 6b—6d of surface steps present on a
cleaved single-crystal wedge-shaped MgO sample
clearly show that phase precision depends on the
measurement area and that averaging techniques
must be used to detect small phase differences.

3.3. Correction for geometric distortions and shear

Geometric distortion in an electron micro-
scope image recorded on a CCD camera is usu-
ally too small to influence the image in any ob-
servable way. However, in off-axis electron holog-
raphy, the phase of the wave at any position, if
derived from the shift of an interference fringe, is
very sensitive to distortions. Interference fringes
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are typically recorded at spacings of about 44,
which, for the current generation of CCD arrays,
corresponds to a maximum of about 100 um. A
distance of less than 100 wm at the detector then
corresponds to a phase shift of 277, which, due to
the obtainable phase precision of about /100,
implies that distortions of the order of 1 um at
the detector can produce measurable phase shifts.
Distortions of this magnitude were present in
these experiments due to fiber optic shear and
projector lens distortions.

The combined effect of both types of distor-
tion was measured by recording a reference holo-
gram (with no object present), since the recon-
structed phase directly revealed the distortion
pattern. This pattern was recorded and used to
correct the phase of the image wave. This was
easily accomplished by subtraction of the recon-
structed distortion phase pattern from the recon-
structed phase of the image wave.

A typical example of the Fourier transform of
a 1024 X 1024 reference hologram is shown in fig.
7a. The typical spot pattern in the sidebands,
clearly visible in the enlarged print in fig. 7b, is
associated with fiber-optic shear. Fig. 7c shows
the magnitude image indicating that gain-normal-
ization of the hologram has effectively removed
intensity variations due to camera fiber-optics,
and fig. 7d shows the phase image representing a
typical distortion pattern. The intensity profiles
plotted in figs. 7e and 7f show a maximum local
phase shift of about w7/2, corresponding to a
maximum local image shift of about 25 um. We
recorded reference holograms for every set of
experiments performed at a given biprism voltage
and lens settings. We found that the correction
procedure was extremely effective and that the
residual variations across the field of view at-
tributable to geometric distortions were smaller
than the shot noise, as can be seen in figs. 7g and
7h. Distortion correction in general doubles the
variance of the noise in the reconstructed phase
as can be seen from a comparison between figs.
7e¢ and 7g. However, notice that the fluctuations
present in the 30-line averaged corrected profile
of fig. 7f are large than a similar profile in fig. 7h,
indicating effective removal of the effects of
fiber-optic shear by the distortion correction pro-

cedure. This leads to the important conclusion
that distortion correction must always be per-
formed, even when measuring phase differences
on a small spatial scale, since fluctuations due to
fiber-optic shear are in general larger than those
caused by shot noise in the hologram.

3.4. Phase unwrapping

In order to properly analyze the phase of the
image wave, it was necessary to calculate the
unambiguously defined phase, which is commonly
referred to as the “unwrapped phase”. In most
practical cases in electron holography, a simple
phase-unwrapping algorithm based on detection
of the 27-discontinuities from the principal val-
ues of the phase is sufficient. We used an inverse
tangent routine to determine the phase of the
complex coefficients, and the discontinuities were
removed by appropriately adding or subtracting
27 from areas of the phase image which were
determined to be wrapped in phase. Detection of
discontinuities was simply accomplished by moni-
toring the difference between two adjacent phase
coefficients on a line-by-line basis. When the
difference exceeded a pre-specified threshold, it
was determined that a discontinuity was present.
Before starting the line-by-line detection and un-
wrapping algorithm the starting phases were de-
termined by analysis of the first column, as illus-
trated in fig. 8.

Fig. 8. Principle of phase unwrapping on a row-by-row basis.
Before unwrapping the rows, the starting phases of the first
column are determined.
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This algorithm worked in most cases because
the difference between adjacent samples of the
unwrapped phase was always lower than the
threshold. The main reason for failure was low
signal-to-noise ratio. If the random phase devia-
tions were larger than the wrapping detection
threshold, it was no longer possibie to unambigu-
ously detect the discontinuities. This problem oc-
curred when part of the sample was thick, pro-
ducing low-amplitude interference fringes due to
inelastic scattering, or when the interference pat-
tern was recorded at very low dose.

The simplest method of phase unwrapping in-
volved trying to minimize the phase variations in
the image by choosing the center of the sideband
(see section 3.5) and then shifting the phase in
the complex image such that phase wrapping was
avoided. The phase was shifted in the complex
image by multiplying by a complex constant. Re-
gions of the phase images at various phase shifts
which were free of phase wrapping were then cut
out and pasted together (after correcting for the
relative phase shifts) to obtain an entire image
which was free of phase wrapping. This method
proved to be very effective and insensitive to
noise, but was more tedious in practice than
applying a single-pass unwrapping algorithm,.

More sophisticated phase-unwrapping algo-
rithms exist than those applied here. A one-di-
mensional algorithm which combines the infor-
mation contained in the principal value and the
derivative is given in ref. [26]. This approach
could be extended to a two-dimensional scheme
for improved performance.

3.5. Flattening the vacuum phase

A coordinate translation in reciprocal space by
a vector g corresponds to a multiplication in real
space by a plane wave (r) = exp(2wiq - r), which
corresponds to an additional phase of 27q - r in
the image. Since the extraction of the sideband
from the Fourier transform of the hologram was
generally only centered to within one pixel, the
resulting reconstructed phase image also con-
tained an additional phase resulting from the
inaccurate centering. The form of the additional
phase described above is a tilted plane, where the

tilt will equal 27 over the width of the image for
every pixel the extracted sideband is off-center.

Removal of this tilted plane was easily accom-
plished by fitting a plane of the form I(x, y)=
Ax+ By + C by a least-squares method to an
area of the phase image which showed only vac-
uum. The intensity in the plane was then sub-
tracted over the entire image so that the phase
was representative of that resulting from a plane
wave normally incident on the sample.

4. Discussion

Detection limits in off-axis electron hologra-
phy in the TEM are determined by the trade-off
between precision and spatial resolution. Eq. (17)
describes how the variance in the phase is in-
versely proportional to the measurement area.
Since the dimensions of the measurement area
Ap can be considered to correspond to the spatial
resolution, eq. (17) implies that the precision of
the phase measurement is inversely proportional
to the spatial resolution. For low spatial resolu-
tion, say details larger than 2-5 nm, the measure-
ment precision can be improved by measuring the
phase averaged over a large region. However, if
effects must be studied on a short spatial scale,
say 0.5-1 nm, considerable deviations in the phase
due to shot noise must be expected. Therefore,
for measurement of small phase differences, such
as surface steps in thin films, the typical resolu-
tion in practice will be about 2-10 nm (see fig. 6).
If large phase differences occur, for example at
certain heterogeneous interfaces, larger phase er-
rors can be tolerated and materials properties
can be studied with spatial resolutions as low as
0.5-1 nm [14].

Implicit in all of the previous discussions is the
fact that the shot noise which limits the measure-
ment precision is dependent entirely on the num-
ber of electrons collected from the region in
which the phase is to be measured. Therefore,
the important parameter is the area of the region
of interest, with no mention of the shape of that
area. This independence of the noise from the
aspect ratio of the region can be exploited in
specimens which contain only one-dimensional
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variations of potential. By averaging in the direc-
tion in which there are no spatial variations, the
signal-to-noise ratio can be increased without de-
grading the spatial resolution in the perpendicu-
lar direction.

It should be considered what limits the ulti-
mate spatial resolution. For spatial frequencies
above about 2 nm ™!, the objective lens introduces
significant mixing of phase and amplitude infor-
mation, where the magnitude of the effect is
dependent on the spatial frequency. Therefore, in
order to extract any information at a resolution
better than about 0.5 nm, it would be necessary
to carry out a full correction of the objective lens
aberrations [8], although it is possible to minimize
this mixing effect by choosing the proper defocus.

The application of egs. (15)-(17) to experi-
mental design also needs to be discussed, in order
to evaluate the influence of the adjustable experi-
mental parameters on the precision of the experi-
mental measurement. The parameters associated
with the gun depend largely on the type of gun
(thermionic or field emission), and, since the
product BR a, is at least 100 times larger for
field emission guns than for thermionic guns,
field emission guns are obviously the electron
source of choice for electron holography. The
objective lens parameters M, and f are rela-
tively fixed and do not vary greatly over different
microscopes, although the new low-gap objective
lenses currently being implemented could offer
an improvement in the phase precision by at least
a factor of 2. Obviously, the biprism distances a
and b are variable (especially b), but, as with the
objective lens parameters, improvement of the
phase precision by adjustment of these parame-
ters is accompanied by a necessary increase in the
image magnification (leading to a reduced field of
view) and the biprism voltage.

Egs. (15)—-(17) imply that the number of pixels
on the CCD array should be kept to a minimum
in order to keep the image magnification and
biprism voltage down and to reduce the phase
uncertainty. This interesting result arises from
the rather restrictive requirement in eq. (13) that
the whole interference pattern fit on the detec-
tor. This requirement implies that a fixed current
(depending only on the electron gun parameters)

would be incident on the detector which should
all be focused in the smallest possible number of
fringes (where the number of fringes should be
N /n). This is an impractical requirement, so the
number of pixels in the CCD array should be
considered a constant.

5. Conclusions

Application of slow-scan CCD cameras for dig-
ital acquisition of electron holograms has permit-
ted quantitative measurement of the phase of the
image wave with a precision higher than that
obtained from holograms recorded on conven-
tional photographic plates. In addition, recon-
struction and analysis from digital holograms are
much more straightforward than from photo-
graphic plates, since the tedious optical recon-
struction and linearization techniques are now
avoided.

Precise measurement of the phase of the exit-
surface wave requires three correction proce-
dures, which have been implemented with digital
image processing. First, it has been established
that geometric distortions of the projector lens
system can be corrected within residual phase
errors of 7/100 using a reference hologram
recorded in the absence of a specimen. Second,
phase unwrapping is required and we have shown
that in most cases a simple phase algorithm,
based on detection of discontinuities in the pri-
mary value of the phase, is sufficient to obtain
the correct phases. Finally, absolute phase mea-
surements can be obtained by using the phase in
a region showing vacuum as a reference.

Electron holograms are typically recorded with
low electron dose (100-200 el /px) which can lead
to phase measurements with significant errors
due to shot noise. Errors can be minimized by
sensible choices of the excitation of the first in-
termediate lens, image magnification, biprism
voltage, exposure time and the use of astigmatic
illumination with optimized diameters of the ma-
jor and minor axes. Further reduction of statisti-
cal errors can be accomplished by averaging tech-
niques, however, in general at the expense of
spatial resolution.
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Appendix A. Asymptotic Cramér-Rao lower bound
for the parameters of holography fringes

This appendix presents the minimum variance
bound for estimation of the parameters (spatial
frequency, amplitude and phase) of holography
fringes. The observed hologram intensity
w(m, n), where m and n are the pixel coordi-
nates (underlined characters denote stochastic
variables), can be written as:

w(m, n) =B+ A sin(mu +nv + ¢) +e(m, n),
(A1)

where e(m, n) models the shot-noise contribu-
tion (which is Poisson-distributed and white), B is
the background intensity, 4 and ¢ denote the
amplitude and the phase of the holography
fringes, respectively, and u and v are the compo-
nents of the spatial frequency vector of the holog-
raphy fringes.

The calculations in this appendix are based on
previously published results [27] valid for one-di-
mensional signals. Basic considerations and com-
mon notation can be found in standard textbooks
on statistical parameter estimation, for example
ref. [28]. The Cramér-Rao lower bound, which
defines the lower bound for the variance of any
unbiased estimator for the holography-fringe pa-
rameters, is defined by the inequality xTPgx >

xTM~!x valid for any vector x (T denotes trans-
position), where P, denotes the variance-covari-
ance matrix P = cov(é, 6), with 6 being an

estimator for the parameter vector given by
60=(A, ¢, u, V)T and cov(B ) being defined by
its i, j element cov(O,, 0]) M is the Fisher infor-
mation matrix given by

. (a In[ £(w;0)] )(a In[ £(;6)] )}

a0 00

M=

(A2)

where E denotes the expectation operator and
f(w; @) is the joint probability density of the pixel
intensities of the observed hologram w(m, n),
with w an one-dimensional vector containing the
values of w(m, n). If the disturbances e(m, n)
are independent and identically distributed
Gaussian random variables with variance o?,
which is a valid assumption if the mean intensity
in the hologram is not too small and the fringe
visibility is not too large, then the joint probabil-

ity density of the observations is
M-1N-1

f(w;0)=11 Il ——

m=0 n=00
l
X exp —ng(m, n;0)|, (A3)
with
d(m, n;0) =w(m, n) —A sin(mu +nv+¢).
(A4)

It is noted that the background intensity B and
the variance of the noise o? could also be in-
cluded as unknown parameters. However, for
one-dimensional signals it has already been estab-
lished that these parameters do not influence the
precision of estimators for fringe parameters [27].
This result also holds for two dimensions [29],
and therefore B and o2 are not included here.
The elements of the information matrix (A.2)
follow from basic calculations, and are given by:

M_iM 1N21 ad(m, n; 0)(8c_i(m,n;0))r.
o? a0

m=0 n=0 30
(A.5)

It is difficult to derive an exact, closed-form solu-
tion for eq. (A.5) valid for any M and N. How-
ever, it has been shown that it is possible to
obtain a simple expression for the asymptotic
Cramér-Rao lower bound [27]:
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o< M —1
Pig= lim M .
M N-ox

P&g can be calculated using:

1 1
M,ljl\/nloc M1+q N1+r
M—1N—1
X Y. Y min cos(mu +ne+¢)
m=0 n=0
! : if 0 and 0
S — cos =0and v =0,
=y 1l+g 1+r ¢ iu l
0 ifu#0orv+#0,

(A.6)

which is valid for ¢ 20, r=0 and —w <u <,
—1 <v <. Eq. (A.6) directly follows from the
one-dimensional equivalent presented in ref. [27].
Element 1,1 of M follows from:

i 1 M UNZVad(m, n;0) dd(m, n;0)
MNee MN =, = o4 94

M~-1 N-1

1
= i — i +nv+
i mgo ngo sin[mu + nv + ¢]

Xsin[mu + nv + ¢ |

1 1 M-1N-1
== lim —— 0
2 mone MN ,EO E(, cos{0]

— cos[2(mu +nv + ¢)] =3, (A7)

where the derivatives in eq. (A.7) are calculated
from eq. (A.4). Comparison of eq. (A.7) with eq.
(A.5) implies that element 1,1 of M equals
MN /20?2 All other elements of M follow in
similar fashion from eq. (A.5), by repeated use of
eq. (A.6) with appropriate values for g and r,
resulting in the asymptotic Cramér-Rao lower
bound:

— 1-1

MN
. 0 0 0
20°
MNA? M?*NA? MN?4?
0 2 2 2
" 20 4o 4o
Féw = MINAT  MANAY MONA?
0
402 602 8a2
MN24%  M3AN24*  MN34?
O 2 2 2
L 4o 8o (Yo

(A8)

Inversion of the matrix yields:

- -
— 0 0 0
MN
1402 12a2 1267
0 - = - .
pe _ MNA? MZ2NA MN24*
R 1202 2402
O TONE WONAD 0
M?2NA M3NA
1207 2407
0 - 242 0 342
L MN24 MN34*

(A9)

The matrix elements on the diagonal of eq. (A.9)
give expressions for the minimum variance bounds
for estimation of the amplitude, the phase and
the spatial frequency in the x and the y direc-
tion, respectively. Non-diagonal elements give ex-
pressions for the covariances between these pa-
rameters.

In this paper, we are interested in the mini-
mum variance bound for the phase expressed in
terms of visibility of the holography fringes and
electron dose. This bound can be easily derived
from eq. (A.9) and the following considerations.
If the number of electrons per pixel is N, then
the total dose N, in the measurement area of
M X N pixels is N, = MNN,, the variance of the
shot noise is o2 =N., and the amplitude of the
holography fringes is 4 = VN, (V' denotes visibil-
ity). The 2,2 element of eq. (A.9) implies that the
minimum variance bound of the estimate of the
phase is:

N 1 1l4¢? 14
var[d>] UN 2 VN, (A.10)
The variance bound (A.10) is an asymptotic ex-
pression true for a measurement area with a large
number of pixels, that is derived using the as-
sumption that the noise is Gaussian-distributed
and stationary up to second order (in other words,
the standard deviation is spatially invariant). This
assumption of stationary noise is only approxi-
mately true. However, simulation experiments [29]
indicated that eq. (A.10) still holds under practi-
cal conditions where MN can be as small as
16 x 16 pixels. For extremely small measurement
regions (< 6 X 6 pixels) this asymptotic expres-
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sion no longer holds and it turns out that the
value of the phase influences its measurement
precision considerably [11].

Notice, that if the spatial frequency in the x
and the y direction are a-priori known, the terms
associated with u and v should be excluded from
eq. (A.8) and the inversion of the resulting 2 X 2
matrix gives var[d?] =2/V2N,, in agreement with
refs. [17,18].
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