
Ultramicroscopy 50 (1993) 269-283 

North-Holland 
ultramicroscopy 

Detection limits in quantitative off-axis electron holography 

W.J. de Ruijter ’ and J.K. Weiss 
Center for Solid State Science, Arizona State University, Tempe, AZ 85287, USA 

Received 11 February 1993; in final form 1 June 1993 

The phase of an electron wave is altered by electric and magnetic fields as it passes through a specimen. This phase 

change can be accurately quantified from off-axis electron holograms acquired using a slow-scan CCD camera, and small 

changes can be observed over small dimensions. Expressions for the precision of the phase estimate, which is limited by shot 

noise, have been developed. These include most of the real experimental parameters. It is found that the typical precision of 

practical phase measurements is better than x/100 for spatial resolutions of l-3 nm, in good agreement with the 

theoretical optimal phase precision. In order to attain such small errors the effects of geometric distortion, which can 

introduce phase differences of up to n, must be carefully corrected. 

1. Introduction 

In conventional transmission electron mi- 
croscopy only the amplitude of the image wave is 
recorded and the phase is lost. Electron hologra- 
phy enables measurement of the phase thus ac- 
commodating a new class of experiments aimed 
at direct determination of properties of electric 
and magnetic fields in specimens [l-7]. Further- 
more, remarkable progress has been made in 
recent years in the application of electron holog- 
raphy for exit-surface wave reconstruction by the 
removal of objective lens aberrations from the 
complex image wave [8]. 

Accurate quantitative analysis of information 
contained in electron holograms has been diffi- 
cult in the past due to limitations caused by the 
recording medium and the procedures used to 
extract the phase. Until recently, phase retrieval 
was based on a reconstruction procedure imple- 
mented on the optical bench. This technique does 
not allow for easy quantitative analysis and, fur- 
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thermore, measurement of very small phase dif- 
ferences, as encountered, for example, in studies 
of monatomic surface steps, is complicated. For 
example, it has been shown that detection of 
small differences (of the order of 2rr/.50) is possi- 
ble with a phase difference amplification method 
which involves a repeated application of optical 
reconstruction that, while effective, is extremely 
tedious [2,9]. In recent years holographic recon- 
struction has been implemented on the computer, 
which necessitated digitization of the photo- 
graphic plate [8]. It has already been demon- 
strated that digital reconstruction makes visual- 
ization of phase shifts on the order of 2~/100 
possible [lo]. Unfortunately, quantitative analysis 
was still not feasible, in part due to problems 
associated with the photographic recording 
medium. The effect of the non-linear response of 
photographic material strongly affects holo- 
graphic reconstruction, and therefore compli- 
cated linearization techniques must be applied 
[ll]. Furthermore, the projector lens system 
causes geometric distortion which distorts abso- 
lute phase measurements: this distortion is very 
difficult to correct accurately from holograms 
recorded photographically. 
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Our aim in this paper is to show that the 
process of holographic reconstruction can be con- 
siderably simplified, and the detection limits and 
measurement accuracy can be dramatically im- 
proved by application of the slow-scan CCD cam- 
era. This device records digitized images with a 
large number of pixels (1024 X 10241, negligible 
geometric distortion, perfect positional stability, 
excellent linearity and approaches single-electron 
detection [ 12,131. Digital acquisition of electron 
holograms with the slow-scan CCD camera re- 
moves the necessity for tedious linearization pro- 
cedures, facilitates simple geometric distortion 
correction, and creates the possibility of on-line 

digital reconstruction. Quantitative analysis and 
visualization of the reconstructed phase can now 
be performed with established digital image- 

processing techniques, and elementary proce- 
dures such as averaging and gray-scale enhance- 
ment give dramatic improvements compared with 
optical reconstruction techniques. 

We present a theoretical analysis based on 
statistical parameter estimation which establishes 
the ultimate precision of phase measurements as 
a function of important experimental parameters 
such as electron dose and biprism voltage. Fur- 
thermore, attention has been given to experimen- 
tal design considerations in order to optimize this 
precision. The measurement techniques pre- 

sented in this paper have been used in the com- 
panion papers on applications of electron holog- 
raphy to the study of interfaces [14] and to mea- 
sure absolute mean inner potential [15]. 

2. Theory 

2. I. Electron holography 

Interference between the object wave and a 
reference wave is made possible by means of a 
biprism located between the back focal plane of 
the objective lens and the object plane of the 
intermediate lens. The geometry is illustrated in 
fig. 1. The amplitude of the image wave is present 
in the hologram as a modulation of the intensity 
of the holography fringes, whereas the phase is 
visible through local fringe shifts. It is useful to 

Field Emission Gun 

Fig. I. Principle of electron holography. The reference wave 

(shaded) and the object wave interfere due to electrostatic 

biprism. 

consider the Fourier transform of the hologram 
intensity which is given by 

where r denotes position in the image plane, g, 
is the spatial frequency of the holography fringes, 
6 is the Dirac delta function, @ denotes convolu- 
tion and F denotes Fourier transformation, $ is 
the image wave given by 

IcI( r) =A(r) exp[id,(r)l j (2) 
with A(r) the amplitude and 4(r) the phase. The 
first terms on the right-hand side of eq. (1) repre- 
sent the information also found in the diffrac- 
togram of a bright-field image, namely the Fourier 
transform of the squared image intensity. Addi- 
tionally, the Fourier transform of the hologram 
contains information in two sidebands, centered 
around -g, and g,, which allow direct retrieval 
of the complex image wave. 

2.2. Precision qf phase measurement 

Due to coherence requirements, holograms are 
typically recorded at electron doses of 100-200 
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Interface or surface step 

Fig. 2. Bending of holography fringes at interface or surface 

step. Reconstruction of phase from electron hologram is 

equivalent to estimation of phase of holography fringes, for 
example, I$, and &, in regions 1 and 2. 

el/px. Since holograms contain noise which limits 
the measurement precision, the precision of the 
phase measurement must be evaluated using sta- 
tistical analysis. We need to measure the phase of 
two-dimensional holography fringes (which are 
two-dimensional sinusoids), as illustrated in fig. 2, 
that are disturbed by noise. 

Noise in an electron hologram is due to 
single-electron events. The shot noise is white 
and Poisson-distributed with a standard deviation 
of u = & where N, is the average number of 
detected electrons per pixel. The amplitude of 
the fringes can also be expressed in terms of 
electron dose as A = V?Ve where V is the fringe 
visibility; a definition commonly used in light- 
optics [161. The achievable precision for estima- 
tion of the phase is established in appendix A as: 

var[J] 2 $, 
t 

(3) 

where 4 is an estimator for the quantity 4 and 
Nt denotes the total electron dose in the mea- 
sured area. Notice that the precision is not re- 
lated to the spacing of the holography fringes. 
The bound (3) can alternatively written as var[$] 
2 7/SNR with signal-to-noise ratio SNR = 
V 2N,/2. 

The minimum variance bound (3) is_ larger 
than the bound given in refs. [17,18]: var[$] r 2/ 
V ‘N,. This bound was calculated for one-dimen- 
sional signals with the assumption that the sinu- 

soidial fringe spacing is a-priori known, and the 
fringe amplitude is unknown (in this case the 
extension to two dimensions is trivial). However, 
in electron holography the x and the y compo- 
nents of the spatial frequency vector are never 
a-priori known in practice, and although they are 
of no specific interest, they significantly influence 
the precision of the phase estimate since these 
quantities are unknown. The calculations in ap- 
pendix A reconfirm the bound for the phase 
estimate given in refs. [17,181, and show that 
inclusion of the spatial frequency in the x and 
the y direction as unknowns increases the mini- 
mum variance bound 7 times. 

The practically achievable variance bound will 
be larger than (3) due to loss of signal-to-noise 
ratio associated with detection of the electron 
hologram. Fortunately, the slow-scan CCD cam- 
era is a near-ideal electron detector, and the loss 
of precision is small. The slow-scan CCD camera 
can be best characterized using the transfer effi- 
ciency (TE), which is given by [19]: 

TE( g) = SNR..,( g)/SNRin( g) 3 (4) 

with SNR.Jg) and SNRi,(g) the signal-to-noise 
ratios of the final digital image in the computer 
and the original electron hologram, respectively. 
Signal-to-noise ratio is defined as the ratio of the 
power of the signal and the power of the noise at 
spatial frequency g. For the ideal camera the 
transfer efficiency is unity over all spatial fre- 
quencies. However, this value is not achieved in 
practice, due to backscattering of a percentage of 
primary electrons incident on the scintillator [19]. 
For the electron doses typical in electron holog- 
raphy (100-200 el/px) the transfer efficiency 
proves to be a constant which is TE = 0.8 for the 
Gatan 679 CCD camera equipped with thin YAG 
scintillator [19]. With eq. (4) the minimum vari- 
ance bound (3) can be rewritten as: 

var[&] 2 &&. 
t 

(5) 

The fact that the transfer efficiency of the camera 
is independent of the spatial frequency of the 
holography fringes might at first seem surprising, 



272 W.J. de Ruijter, J.K. Weiss / Detection limits in quantitatice off-axis electron holography 

1.2 

3 0.6 

3. 
.& 0.6 
2 
e! 
= 0.4 

0.2 

~ noisy image 

a holography fringes 

0.000 0.005 0.010 0.015 

Spatial Frequency (l/pm) 

0.020 

Fig. 3. Amplitude of holography fringes at five different 

frequencies compared with the square root of the power 

spectrum of the shot noise, as measured from a division of 

two images recorded with uniform illumination without speci- 

men. The amplitude of the holography fringe with lowest 

spatial frequency is used to scale the measured amplitudes to 
the power spectrum of the shot noise. 

because fringes with higher spatial frequency are 
attenuated considerably due to the modulation 
transfer function of the CCD camera, which, for 
our Gatan 679, is about 0.2 at the Nyquist fre- 
quency [131. Consider, however, that the shot 
noise in the hologram should be attenuated by 
exactly the same amount. Therefore, if the elec- 
tron dose is not too small, such that the shot 
noise due to primary electrons incident on the 
scintillator dominate the noise contribution origi- 
nating from electronic read-out noise and the 
spread in CCD well-electron generation, the 
transfer efficiency should be independent of the 
spatial frequency [19]. This is illustrated by the 
measurement results presented in fig. 3, showing 
a comparison of the square root of the power 
spectrum of the shot noise and the amplitude of 
holography fringes imaged at different micro- 
scope magnifications. 

2.3. Experimental design considerations 

The precision (5) is determined by the product 
V2N, which is dependent upon several variables. 
Tuning those variables to optimize the measure- 

ment precision is known as experimental design 
[20]. This section introduces important physical 
parameters, determines their influence on the 
precision of the phase measurement, in turn lead- 
ing to recommendations for optimal experimental 
conditions. 

The variables which determine the total num- 
ber of electrons IV, incident in an area A, follow 
from [21] 

N, = 
TT~PR$+ 4A, 

e rd,d, ’ 
(6) 

where /3 is the gun brightness, R, denotes the 
Gaussian source size projected at the specimen 
plane, (~a is the convergence half angle of the 
illumination, T is the measurement time, and d,, 
d, are the major and minor axes, respectively, of 
the astigmatic illumination. The fringe visibility V 
is highly dependent on the length d, of the 
illuminated region in the direction perpendicular 
to the holography fringes, and can be described 
by ES'31 

V=exp[-( 2rrfz’D)1], 

where D is the distance between areas at the 
specimen plane which interfere behind the 
biprism. 

The experimental parameters which are easi- 
est to adjust are the illumination diameters d, 
and d,. The product V2N, can be maximized 
with respect to d, using eqs. (6) and (71, as is 
illustrated in fig. 4, with the result 

d, = 
4~R,q, D 

A . 
(8) 

The width d, must be large enough to illuminate 
width D evenly because for large convergence 
angles ((Y() > 10 mrad) spherical aberration of the 
upper half of the objective lens, C’:‘), may domi- 
nate the intensity distribution on the sample [241. 
Since the spherical aberration caustic has a ra- 
dius of about rS = C:“)(Y~, as long as d, z+- ra, 
which will generally be true for d, = kD with 
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Fig. 4. Optimization of V’N, with respect to illumination 

diameter d,. With experimental conditions given in tables 1 

and 2 the optimal choice for d, is 380, D being the distance 

of interference distance scaled to the specimen, resulting in 

an electron dose of 200 el/px and fringe visibility of 78%. 

k > 1, the specimen will be evenly illuminated. 
With these values for d, and d,, it follows that: 

(9) 

V= exp[ - l/4]. (10) 

The width D can be expressed in terms of the 
biprism voltage U, as: 

D= 
2h, 
-u 
M&j B’ 

(11) 

where b is the distance between the biprism and 
the intermediate image plane, Mobj is the objec- 
tive lens magnification, and yO is a constant de- 
pending on the accelerating voltage of the micro- 
scope 181. Following eqs. (51, (9) and (11) the 
variance for the phase estimate is proportional to 
Ui/r, which implies that the precision (5) can be 
optimized by choosing large T and small U,. 
Unfortunately, these parameters cannot be cho- 
sen arbitrarily. 

The integration time T is limited by the stabil- 
ity of the microscope, specifically the specimen 
stage and the biprism mount. Drift of the speci- 
men stage leads to loss of spatial resolution, and 
since standard specimen holders are often not 
rated at better than 1 nm/min drift, the acquisi- 
tion time must usually be kept between 1 and 5 s. 

Similarly, if the biprism position drifts during 
acquisition, the fringe contrast will be reduced, 
but since the objective lens magnification is high 
and the biprism lies in the image plane of the 
objective, there is considerably more tolerance 
for biprism drift. 

The choice of the biprism voltage 17, is limited 
because the width of the field of view (11) and 
the interference fringe spacing s 

hf 
S=2y,aU,’ (12) 

where f is the focal length of the objective lens 
and a is the distance between the back focal 
plane of the objective lens and the biprism, are 
both dependent upon U,. In the following we will 
describe requirements for D and s, which lead to 
a specific choice for U,. 

The width of the holographic interference band 
(11) at the detector plane should be about the 
same size as the detector. The width of this 
interference region is slightly less than D due to 
vignetting of the biprism, resulting in: 

MD=wNA,, (13) 

where M is the microscope magnification, N is 
the number of pixels across the CCD array, A, is 
the camera pixel size, and w is a constant of 
value generally between 1 and 2. In addition, it is 
necessary to make the fringe spacing s (12) greater 
than the Nyquist limit 24, where A = AC/M. In 
order to prevent overlap of the sidebands of the 
hologram with the central diffractogram, it is 
necessary to locate the sidebands an appreciable 
distance away from the center, leading to a choice 

Ms =nA,, (14) 

where n is a number in general between 3 and 5. 
Specific choices for w and II lead to unique 
magnification and biprism voltage settings, which 
are found by substitution of eqs. (11) and (12) in 
eqs. (13) and (141, respectively: 

,=A,[ swNn]“*, 

U,= _L[Fq]“2. 

(15) 

(16) 
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Typical values for experimental parameters for electron 

holography on Philips EM400ST-FEG with Gatan 679 CCD 
camera 

Table 1 Table 2 

Optimal experimental conditions for electron holography on 

Philips EM400ST-FEG with Gatan 679 CCD camera 

Param- Value Param- Value 

eter eter 

h 0.0037 nm R, 0.8 nm 

YII 1.96~ 10mh rad/V alI 14 mrad 

(’ 1.602x IO-‘” C N 1024 

M oh, 55 3, 24 grn 

.f I.5 mm TE 0.8 

‘1 61 mm 7 IS 

I? 16 mm 4 

s 4~ IO” A/m’,sr ; 2 

CL’ 1.5 

Parameter Value 

d, 38D 

dz ZD 

n 100 nm 

s 0.26 nm 

Parameter Value 

M 366 000 

_l 0.066 nm 

UB 88.4 v 

V 789 

Ri; 50000 ei/nm’ 

An expression for the for the optimal variance 
of the phase estimate (5) follows from eqs. (9) 
and (10) combined with eqs. (11) and (16): 

14 exp[l/2] e $!J wkN 
var[f$] = TE ~~~ 

P&Y Moh;~ d, ’ 

(17) 

Typical values of experimental parameters are 
shown in table 1. The design rules outlined above, 
combined with the experimental parameters listed 
in table 1, result in the optimal experimental 
conditions listed in table 2. The optimal standard 
deviation in the measured phase follows from eq. 
(17) by substituting values listed in table 1 and is 
of the order of r/100 radians for small measure- 
ment areas of the order of A, = 1 nm2. 

biprism was electrically isolated from the micro- 
scope column, and was connected to an external 
high-voltage battery source which could produce 
variable potentials of up to 180 V on the biprism. 
In order to facilitate electron holography, the 
electronics of the microscope had to be slightly 
altered to accommodate a higher current in the 
first intermediate lens in order that the first in- 
termediate image was formed below the biprism. 

The CCD images were recorded using a Mac- 
intosh IIfx computer equipped with 32 MB of 
memory, a two-page monitor and a 20 MFlop 
Mercury MC3200 floating point array processor. 
The software delivered with the slow-scan CCD 
camera (DigitalMicrograph) allowed user-ori- 
ented expansion through custom functions. We 

Hologram 

3. Experimental holography 

3.1. Digital acquisition of holograms 

The off-axis electron holograms were pro- 
duced in a Philips EM400ST-FEG electron mi- 
croscope equipped with a thermally assisted field 
emission gun [25]. The holograms were recorded 
on a Gatan 679 slow-scan CCD camera equipped 
with a 1024 X 1024 pixel detector. The biprism 
was a thin glass fiber ( - 0.5 pm diameter) coated 
with a thin layer of gold which was mounted in 
one of the selected area aperture positions. The 

ve 

I I 

Fig. 5. Reconstruction of magnitude and phase of the complex 
image wave. FFT is fast forward Fourier transform and IFT is 

fast inverse Fourier transform. 
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developed as set of custom functions which en- 
abled us to perform fast on-line and off-line 
holographic reconstructions. 

Due to coherence requirements, a dose rate of 
approximately 50000 el/nm* . s was incident on 
the specimen. In order to reduce the effects of 
specimen and/or biprism drift, exposure times of 

about 1 s were typically used. With magnifica- 
tions of about 300k x , at which 0.3 nm interfer- 
ence fringes corresponded to a distance of 44, at 
the CCD detector, this dose rate corresponded to 
about 150 el/px on the detector. 

The fiber-optic coupling which transferred 
photons from the YAG scintillator to the CCD 

Fig. 6. (a) 256X256 pixel section of 1024X 1024 pixel holo- 
gram of wedge-shaped sample of single-crystal MgO, and 
180X 150 pixel sections from 256x256 pixel reconstructed 
phase images with (b) no averaging, (c) 3X3 pixel averaging 
and Cd) 10X 10 pixel averaging. The white contour lines are 

plotted with r/2 increments in the phase. 
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detector caused a characteristic pattern of small 
intensity variations which, in the case of the Gatan 
679, was a hexagonal pattern. These variations 

were taken out of the final image by gain normal- 
ization accomplished by on-line division by a 
gain-reference image [ 131. 

Fig. 7. (a) Fourier transform of a 1024X 1024 reference hologram, (b) enlarged view of sideband in box indicated in (a), (c) 
reconstructed amplitude image, Cd) reconstructed phase image, (e) intensity profile along a line in (d), (f) 30-line average centered 

along the same line, (g) intensity profile along a line in the corrected phase image and (h) 30-line average along the same line. 
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Fig. 7 (continued). 

3.2. Phase reconstruction 

The restoration of the phase from the digitally 
recorded hologram involved the use of standard 
Fourier processing techniques. The availability of 
digital data from the CCD camera greatly facili- 
tated quantitative numerical processing and its 
precision, since there were no intermediate 
recording media or digitization processes which 
could distort the data. 

A Fourier spectrum of the off-axis hologram 
shows prominent sidebands at a spatial frequency 
corresponding to the interference fringe spacing. 
The phase reconstruction involved the extraction 
of a subregion centered on one of the sidebands 
from the Fourier transform of the original holo- 
gram, as shown in fig. 5. Subsequent inverse 
Fourier transformation of this subregion yielded 
a complex image, from which the amplitude and 
phase were retrieved by simple mathematical op- 
erations. 

Several artifacts of the imaging and recon- 
struction processes which appear at this point 
must be removed before quantification is at- 
tempted. First, geometric distortions of the pro- 
jector lenses produce small shifts of the interfer- 
ence fringes which cause distortions of the recon- 

structed phase. Second, if the sideband is not 
chosen exactly at the center of the extracted 
subregion, a residual tilted plane will be added to 
the phase image. Finally, if the phase changes in 
the reconstructed image are larger than 2~, cal- 
culation of the phase by use of the inverse tan- 
gent causes artifacts in the reconstructed phase in 
the form of discontinuous jumps of 27r. Methods 
to remove these artifacts are discussed in the 
following sections. These methods have been used 
to produce the phase images in the example 
presented in fig. 6. The reconstructed phase im- 
ages in figs. 6b-6d of surface steps present on a 
cleaved single-crystal wedge-shaped MgO sample 
clearly show that phase precision depends on the 
measurement area and that averaging techniques 
must be used to detect small phase differences. 

3.3. Correction for geometric distortions and shear 

Geometric distortion in an electron micro- 
scope image recorded on a CCD camera is usu- 
ally too small to influence the image in any ob- 
servable way. However, in off-axis electron holog- 
raphy, the phase of the wave at any position, if 
derived from the shift of an interference fringe, is 
very sensitive to distortions. Interference fringes 
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are typically recorded at spacings of about 43, 
which, for the current generation of CCD arrays, 
corresponds to a maximum of about 100 pm. A 
distance of less than 100 pm at the detector then 
corresponds to a phase shift of 27~~ which, due to 
the obtainable phase precision of about r/100, 
implies that distortions of the order of 1 pm at 
the detector can produce measurable phase shifts. 
Distortions of this magnitude were present in 
these experiments due to fiber optic shear and 
projector lens distortions. 

The combined effect of both types of distor- 
tion was measured by recording a reference holo- 
gram (with no object present), since the recon- 
structed phase directly revealed the distortion 
pattern. This pattern was recorded and used to 
correct the phase of the image wave. This was 
easily accomplished by subtraction of the recon- 
structed distortion phase pattern from the recon- 

structed phase of the image wave. 
A typical example of the Fourier transform of 

a 1024 X 1024 reference hologram is shown in fig. 
7a. The typical spot pattern in the sidebands, 
clearly visible in the enlarged print in fig. 7b, is 
associated with fiber-optic shear. Fig. 7c shows 
the magnitude image indicating that gain-normal- 
ization of the hologram has effectively removed 
intensity variations due to camera fiber-optics, 
and fig. 7d shows the phase image representing a 
typical distortion pattern. The intensity profiles 
plotted in figs. 7e and 7f show a maximum local 
phase shift of about r/2, corresponding to a 
maximum local image shift of about 25 Frn. We 
recorded reference holograms for every set of 
experiments performed at a given biprism voltage 
and lens settings. We found that the correction 
procedure was extremely effective and that the 
residual variations across the field of view at- 
tributable to geometric distortions were smaller 
than the shot noise, as can be seen in figs. 7g and 
7h. Distortion correction in general doubles the 
variance of the noise in the reconstructed phase 
as can be seen from a comparison between figs. 
7e and 7g. However, notice that the fluctuations 
present in the 30-line averaged corrected profile 
of fig. 7f are large than a similar profile in fig. 7h, 
indicating effective removal of the effects of 
fiber-optic shear by the distortion correction pro- 

cedure. This leads to the important conclusion 
that distortion correction must always be per- 
formed, even when measuring phase differences 
on a small spatial scale, since fluctuations due to 
fiber-optic shear are in general larger than those 
caused by shot noise in the hologram. 

3.4. Phase unwrapping 

In order to properly analyze the phase of the 
image wave, it was necessary to calculate the 

unambiguously defined phase, which is commonly 
referred to as the “unwrapped phase”. In most 
practical cases in electron holography, a simple 
phase-unwrapping algorithm based on detection 
of the 2rr-discontinuities from the principal val- 
ues of the phase is sufficient. We used an inverse 
tangent routine to determine the phase of the 
complex coefficients, and the discontinuities were 
removed by appropriately adding or subtracting 
27r from areas of the phase image which were 
determined to be wrapped in phase. Detection of 
discontinuities was simply accomplished by moni- 
toring the difference between two adjacent phase 
coefficients on a line-by-line basis. When the 
difference exceeded a pre-specified threshold, it 
was determined that a discontinuity was present. 
Before starting the line-by-line detection and un- 
wrapping algorithm the starting phases were de- 
termined by analysis of the first column, as illus- 
trated in fig. 8. 

Fig. 8. Principle of phase unwrapping on a row-by-row basis. 

Before unwrapping the rows, the starting phases of the first 
column are determined. 
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This algorithm worked in most cases because 
the difference between adjacent samples of the 
unwrapped phase was always lower than the 
threshold. The main reason for failure was low 
signal-to-noise ratio. If the random phase devia- 
tions were larger than the wrapping detection 
threshold, it was no longer possible to unambigu- 
ously detect the discontinuities. This problem oc- 
curred when part of the sample was thick, pro- 
ducing low-amplitude interference fringes due to 
inelastic scattering, or when the interference pat- 
tern was recorded at very low dose. 

The simplest method of phase unwrapping in- 
volved trying to minimize the phase variations in 
the image by choosing the center of the sideband 
(see section 3.5) and then shifting the phase in 
the complex image such that phase wrapping was 
avoided. The phase was shifted in the complex 
image by multiplying by a complex constant. Re- 
gions of the phase images at various phase shifts 
which were free of phase wrapping were then cut 
out and pasted together (after correcting for the 
relative phase shifts) to obtain an entire image 
which was free of phase wrapping. This method 
proved to be very effective and insensitive to 
noise, but was more tedious in practice than 
applying a single-pass unwrapping algorithm. 

More sophisticated phase-unwrapping algo- 
rithms exist than those applied here. A one-di- 
mensional algorithm which combines the infor- 
mation contained in the principal value and the 
derivative is given in ref. [26]. This approach 
could be extended to a two-dimensional scheme 
for improved performance. 

3.5. Flattening the vacuum phase 

A coordinate translation in reciprocal space by 
a vector q corresponds to a multiplication in real 
space by a plane wave 4(r) = exp(2n-iq - r), which 
corresponds to an additional phase of 2rq - r in 
the image. Since the extraction of the sideband 
from the Fourier transform of the hologram was 
generally only centered to within one pixel, the 
resulting reconstructed phase image also con- 
tained an additional phase resulting from the 
inaccurate centering. The form of the additional 
phase described above is a tilted plane, where the 

tilt will equal 27 over the width of the image for 
every pixel the extracted sideband is off-center. 

Removal of this tilted plane was easily accom- 
plished by fitting a plane of the form 1(x, y) = 
Rw + By + C by a least-squares method to an 
area of the phase image which showed only vac- 
uum. The intensity in the plane was then sub- 
tracted over the entire image so that the phase 
was representative of that resulting from a plane 
wave normally incident on the sample. 

4. Discussion 

Detection limits in off-axis electron hologra- 
phy in the TEM are determined by the trade-off 
between precision and spatial resolution. Eq. (17) 
describes how the variance in the phase is in- 
versely proportional to the measurement area. 
Since the dimensions of the measurement area 
A, can be considered to correspond to the spatial 
resolution, eq. (17) implies that the precision of 
the phase measurement is inversely proportional 
to the spatial resolution. For low spatial resolu- 
tion, say details larger than 2-5 nm, the measure- 
ment precision can be improved by measuring the 
phase averaged over a large region. However, if 
effects must be studied on a short spatial scale, 
say 0.5-l nm, considerable deviations in the phase 
due to shot noise must be expected. Therefore, 
for measurement of small phase differences, such 
as surface steps in thin films, the typical resolu- 
tion in practice will be about 2-10 nm (see fig. 6). 
If large phase differences occur, for example at 
certain heterogeneous interfaces, larger phase er- 
rors can be tolerated and materials properties 
can be studied with spatial resolutions as low as 
0.5-l nm [14]. 

Implicit in all of the previous discussions is the 
fact that the shot noise which limits the measure- 
ment precision is dependent entirely on the num- 
ber of electrons collected from the region in 
which the phase is to be measured. Therefore, 
the important parameter is the area of the region 
of interest, with no mention of the shape of that 
area. This independence of the noise from the 
aspect ratio of the region can be exploited in 
specimens which contain only one-dimensional 
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variations of potential. By averaging in the direc- 
tion in which there are no spatial variations, the 
signal-to-noise ratio can be increased without de- 
grading the spatial resolution in the perpendicu- 

lar direction. 
It should be considered what limits the ulti- 

mate spatial resolution. For spatial frequencies 
above about 2 nm- ‘, the objective lens introduces 
significant mixing of phase and amplitude infor- 
mation, where the magnitude of the effect is 
dependent on the spatial frequency. Therefore, in 
order to extract any information at a resolution 
better than about 0.5 nm, it would be necessary 
to carry out a full correction of the objective lens 
aberrations [8], although it is possible to minimize 
this mixing effect by choosing the proper defocus. 

The application of eqs. (1%(17) to experi- 
mental design also needs to be discussed, in order 
to evaluate the influence of the adjustable experi- 
mental parameters on the precision of the experi- 
mental measurement. The parameters associated 
with the gun depend largely on the type of gun 
(thermionic or field emission), and, since the 

product PR,(Y” is at least 100 times larger for 
field emission guns than for thermionic guns, 
field emission guns are obviously the electron 
source of choice for electron holography. The 
objective lens parameters M,, and f are rela- 
tively fixed and do not vary greatly over different 
microscopes, although the new low-gap objective 
lenses currently being implemented could offer 

an improvement in the phase precision by at least 
a factor of 2. Obviously, the biprism distances a 
and b are variable (especially b), but, as with the 
objective lens parameters, improvement of the 
phase precision by adjustment of these parame- 
ters is accompanied by a necessary increase in the 
image magnification (leading to a reduced field of 

view) and the biprism voltage. 
Eqs. (15)-(17) imply that the number of pixels 

on the CCD array should be kept to a minimum 
in order to keep the image magnification and 
biprism voltage down and to reduce the phase 
uncertainty. This interesting result arises from 
the rather restrictive requirement in eq. (13) that 
the whole interference pattern fit on the detec- 
tor. This requirement implies that a fixed current 
(depending only on the electron gun parameters) 

would be incident on the detector which should 
all be focused in the smallest possible number of 
fringes (where the number of fringes should be 
N/n). This is an impractical requirement, so the 
number of pixels in the CCD array should be 

considered a constant. 

5. Conclusions 

Application of slow-scan CCD cameras for dig- 
ital acquisition of electron holograms has permit- 
ted quantitative measurement of the phase of the 
image wave with a precision higher than that 
obtained from holograms recorded on conven- 
tional photographic plates. In addition, recon- 
struction and analysis from digital holograms are 
much more straightforward than from photo- 
graphic plates, since the tedious optical recon- 
struction and linearization techniques are now 
avoided. 

Precise measurement of the phase of the exit- 
surface wave requires three correction proce- 
dures, which have been implemented with digital 
image processing. First, it has been established 
that geometric distortions of the projector lens 
system can be corrected within residual phase 
errors of rr/lOO using a reference hologram 
recorded in the absence of a specimen. Second, 
phase unwrapping is required and we have shown 
that in most cases a simple phase algorithm, 
based on detection of discontinuities in the pri- 
mary value of the phase, is sufficient to obtain 
the correct phases. Finally, absolute phase mea- 
surements can be obtained by using the phase in 
a region showing vacuum as a reference. 

Electron holograms are typically recorded with 
low electron dose (100-200 el/px) which can lead 
to phase measurements with significant errors 
due to shot noise. Errors can be minimized by 
sensible choices of the excitation of the first in- 
termediate lens, image magnification, biprism 
voltage, exposure time and the use of astigmatic 
illumination with optimized diameters of the ma- 
jor and minor axes. Further reduction of statisti- 
cal errors can be accomplished by averaging tech- 
niques, however, in general at the expense of 
spatial resolution. 
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Appendix A. Asymptotic Cram&-Rao lower bound 
for the parameters of holography fringes 

This appendix presents the minimum variance 
bound for estimation of the parameters (spatial 
frequency, amplitude and phase) of holography 
fringes. The observed hologram intensity 
_w(m, n), where m and II are the pixel coordi- 
nates (underlined characters denote stochastic 
variables), can be written as: 
_w(m, n) =B+A sin(mu+nu+$) +~(m, n), 

(A.1) 

where &, n) models the shot-noise contribu- 
tion (which is Poisson-distributed and white), B is 
the background intensity, A and 4 denote the 
amplitude and the phase of the holography 
fringes, respectively, and u and u are the compo- 
nents of the spatial frequency vector of the holog- 
raphy fringes. 

The calculations in this appendix are based on 
previously published results [27] valid for one-di- 
mensional signals. Basic considerations and com- 
mon notation can be found in standard textbooks 
on statistical parameter estimation, for example 
ref. [28]. The Cram&-Rao lower bound, which 
defines the lower bound for the variance of any 
unbiased estimator for the holography-fringe pa- 
rameters, is defined by the inequality xTPCRx 2 
xTM-‘x valid for any vector x (T denotes trans- 
position), where PCR dencte: the vari:nce-covari- 
ante matrix PCR = cod@, 191, with 8 being an 

estimator for the parameter vector 0 given by 
8 = (A, 4, u, ujT and cov(i, e^> being defined by 
its i, j element COV($~, ij>. M is the Fisher infor- 
mation matrix given by 

M=E 
a ln[f(_w;e>l 

ae 

(A-2) 
where E denotes the expectation operator and 
f<_w ; 0) is the joint probability density of the pixel 
intensities of the observed hologram w(m, n>, 
with w an one-dimensional vector containing the 
values of _w(m, n). If the disturbances _~(m, n) 
are independent and identically distributed 
Gaussian random variables with variance u2, 
which is a valid assumption if the mean intensity 
in the hologram is not too small and the fringe 
visibility is not too large, then the joint probabil- 
ity density of the observations is 

[ 

1 
Xexp - Qd2( m,n;o) , 1 (A.3) 

with 
d(m, n;e) =y(m, n) -A sin(mu +nu +$). 

(A.4) 

It is noted that the background intensity B and 
the variance of the noise c2 could also be in- 
cluded as unknown parameters. However, for 
one-dimensional signals it has already been estab- 
lished that these parameters do not influence the 
precision of estimators for fringe parameters [271. 
This result also holds for two dimensions [29], 
and therefore B and u2 are not included here. 
The elements of the information matrix (A.21 
follow from basic calculations, and are given by: 

1 M-1 N-1 ad(m, n;e) a+, n;e) T 
M=-$cra* 

m=O n=O i 
-ae . 1 

(A.5) 
It is difficult to derive an exact, closed-form solu- 
tion for eq. (A.51 valid for any M and N. How- 
ever, it has been shown that it is possible to 
obtain a simple expression for the asymptotic 
Cram&-Rao lower bound [271: 
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P&= lim Mp’. 
M,N-= 

P& can be calculated using: 

I 1 
lim - ~ 

M,N+a 
,,,f’+‘j Ni+’ 

M-l N-1 

x c c rrlqnr cos( mu + 121’ + 4) 
m=o n-o 

i 

1 1 
--co!3 f$ 

= l+ql+r 
if u=Oand r:=O, 

0 if u+Oor u#O, 

(A.6) 

which is valid for 920, r>O and -rr<u<r, 
---7~ I cl < T. Eq. (A.6) directly follows from the 

one-dimensional equivalent presented in ref. [271. 

Element 1,l of M follows from: 

Xsin[mu +n~++] 

=iMlm ~z & “c’ Nc’ cos[O] 
m=O n=o 

-cos[2(mu+nc+~)]=;, (A.7) 

where the derivatives in eq. (A.7) are calculated 
from eq. (A.4). Comparison of eq. (A.7) with eq. 
(AS) implies that element 1,l of M equals 
MN/2a2. All other elements of M follow in 
similar fashion from eq. (A.5), by repeated use of 
eq. (A.6) with appropriate values for q and r, 
resulting in the asymptotic Cramer-Rao lower 
bound: 

P& = 

MN 

2az 

0 

0 

0 

0 0 0 

MNA2 M2NA2 MN2A2 

2v2 4a2 4Cr2 

M ‘NA2 M 3NA2 M2N2A2 

4a2 ha 2 
8cT2 

MN 2A2 M2N2A2 MN’A’ 

4C7 2 
SC72 6a2 

I 

(A.81 

Inversion of the matrix yields: 

P& = 

0 

14*’ 

MNA’ 

12a’ 

M2NA2 

12lr? 

MN2A2 

12lT? 

M2NA2 

24~’ 

M’NA2 

0 

12CJL 

MN ‘A’ 

0 

24~’ 

MN’A’ 

1 

(A.9) 

The matrix elements on the diagonal of eq. (A.9) 
give expressions for the minimum variance bounds 

for estimation of the amplitude, the phase and 
the spatial frequency in the x and the y direc- 
tion, respectively. Non-diagonal elements give ex- 
pressions for the covariances between these pa- 
rameters. 

In this paper, we are interested in the mini- 
mum variance bound for the phase expressed in 
terms of visibility of the holography fringes and 
electron dose. This bound can be easily derived 
from eq. (A.9) and the following considerations. 
If the number of electrons per pixel is N,, then 
the total dose N, in the measurement area of 
M x N pixels is N, = MNN,, the variance of the 
shot noise is v * = N,, and the amp litude of the 
holography fringes is A = We (V denotes visibil- 
ity). The 2,2 element of eq. (A.9) implies that the 
minimum variance bound of the estimate of the 
phase is: 

var[J] =--&$=A. t (A.lO) 

The variance bound (A.lO) is an asymptotic ex- 
pression true for a measurement area with a large 
number of pixels, that is derived using the as- 
sumption that the noise is Gaussian-distributed 
and stationary up to second order (in other words, 
the standard deviation is spatially invariant). This 
assumption of stationary noise is only approxi- 
mately true. However, simulation experiments [29] 
indicated that eq. (A.lO) still holds under practi- 
cal conditions where MN can be as small as 
16 X 16 pixels. For extremely small measurement 
regions ( < 6 x 6 pixels) this asymptotic expres- 
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sion no longer holds and it turns out that the 
value of the phase influences its measurement 
precision considerably [ll]. 

Notice, that if the spatial frequency in the x 
and the y direction are a-priori known, the terms 
associated with u and u should be excluded from 
eq. (A.8) and the inversion of the resulting 2 x 2 
matrix gives var[& = 2/V*N,, in agreement with 
refs. [17,18]. 
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